Copied to
clipboard

G = C22×C32.A4order 432 = 24·33

Direct product of C22 and C32.A4

direct product, metabelian, soluble, monomial

Aliases: C22×C32.A4, C62.7A4, C2453- 1+2, C6.16(C6×A4), (C2×C6).5C62, C32.(C22×A4), (C2×C62).17C6, C62.43(C2×C6), (C22×C62).2C3, (C23×C6).9C32, C232(C2×3- 1+2), C222(C22×3- 1+2), C3.4(A4×C2×C6), (C2×C3.A4)⋊3C6, C3.A43(C2×C6), (C2×C6).25(C3×A4), (C3×C6).10(C2×A4), (C22×C3.A4)⋊6C3, (C22×C6).10(C3×C6), SmallGroup(432,549)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C22×C32.A4
C1C22C2×C6C62C32.A4C2×C32.A4 — C22×C32.A4
C22C2×C6 — C22×C32.A4
C1C2×C6C62

Generators and relations for C22×C32.A4
 G = < a,b,c,d,e,f,g | a2=b2=c3=d3=e2=f2=1, g3=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg-1=cd-1, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Subgroups: 502 in 194 conjugacy classes, 50 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C23, C9, C32, C2×C6, C2×C6, C24, C18, C3×C6, C3×C6, C22×C6, C22×C6, 3- 1+2, C3.A4, C2×C18, C62, C62, C23×C6, C23×C6, C2×3- 1+2, C2×C3.A4, C2×C62, C2×C62, C32.A4, C22×3- 1+2, C22×C3.A4, C22×C62, C2×C32.A4, C22×C32.A4
Quotients: C1, C2, C3, C22, C6, C32, A4, C2×C6, C3×C6, C2×A4, 3- 1+2, C3×A4, C62, C22×A4, C2×3- 1+2, C6×A4, C32.A4, C22×3- 1+2, A4×C2×C6, C2×C32.A4, C22×C32.A4

Smallest permutation representation of C22×C32.A4
On 36 points
Generators in S36
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 19)(9 20)(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 28)(8 29)(9 30)(10 24)(11 25)(12 26)(13 27)(14 19)(15 20)(16 21)(17 22)(18 23)
(2 8 5)(3 6 9)(11 17 14)(12 15 18)(19 25 22)(20 23 26)(29 35 32)(30 33 36)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 21)(3 23)(4 24)(6 26)(7 27)(9 20)(10 34)(12 36)(13 28)(15 30)(16 31)(18 33)
(1 21)(2 22)(4 24)(5 25)(7 27)(8 19)(10 34)(11 35)(13 28)(14 29)(16 31)(17 32)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,24)(11,25)(12,26)(13,27)(14,19)(15,20)(16,21)(17,22)(18,23), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,25,22)(20,23,26)(29,35,32)(30,33,36), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,21)(3,23)(4,24)(6,26)(7,27)(9,20)(10,34)(12,36)(13,28)(15,30)(16,31)(18,33), (1,21)(2,22)(4,24)(5,25)(7,27)(8,19)(10,34)(11,35)(13,28)(14,29)(16,31)(17,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,24)(11,25)(12,26)(13,27)(14,19)(15,20)(16,21)(17,22)(18,23), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,25,22)(20,23,26)(29,35,32)(30,33,36), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,21)(3,23)(4,24)(6,26)(7,27)(9,20)(10,34)(12,36)(13,28)(15,30)(16,31)(18,33), (1,21)(2,22)(4,24)(5,25)(7,27)(8,19)(10,34)(11,35)(13,28)(14,29)(16,31)(17,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,19),(9,20),(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,28),(8,29),(9,30),(10,24),(11,25),(12,26),(13,27),(14,19),(15,20),(16,21),(17,22),(18,23)], [(2,8,5),(3,6,9),(11,17,14),(12,15,18),(19,25,22),(20,23,26),(29,35,32),(30,33,36)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,21),(3,23),(4,24),(6,26),(7,27),(9,20),(10,34),(12,36),(13,28),(15,30),(16,31),(18,33)], [(1,21),(2,22),(4,24),(5,25),(7,27),(8,19),(10,34),(11,35),(13,28),(14,29),(16,31),(17,32)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D6A···6F6G···6AR9A···9F18A···18R
order1222222233336···66···69···918···18
size1111333311331···13···312···1212···12

80 irreducible representations

dim11111133333333
type++++
imageC1C2C3C3C6C6A4C2×A43- 1+2C3×A4C2×3- 1+2C6×A4C32.A4C2×C32.A4
kernelC22×C32.A4C2×C32.A4C22×C3.A4C22×C62C2×C3.A4C2×C62C62C3×C6C24C2×C6C23C6C22C2
# reps1362186132266618

Matrix representation of C22×C32.A4 in GL6(𝔽19)

100000
010000
001000
0001800
0000180
0000018
,
1800000
0180000
0018000
000100
000010
000001
,
100000
0110000
007000
000100
000010
000001
,
1100000
0110000
0011000
000100
000010
000001
,
100000
010000
001000
0001800
0000180
000001
,
100000
010000
001000
0001800
000010
0000018
,
010000
001000
1100000
000010
000001
000100

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,18],[0,0,11,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

C22×C32.A4 in GAP, Magma, Sage, TeX

C_2^2\times C_3^2.A_4
% in TeX

G:=Group("C2^2xC3^2.A4");
// GroupNames label

G:=SmallGroup(432,549);
// by ID

G=gap.SmallGroup(432,549);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,205,353,2287,3989]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^3=d^3=e^2=f^2=1,g^3=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g^-1=c*d^-1,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
×
𝔽